Breakthrough ‘Madala Boson’ Could Unlock the Mysteries of Dark Matter

The Higgs’ boson helped us understand known matter, but scientists at the High Energy Physics Group (HEP) of the University of the Witwatersrand in Johannesburg believe they have the necessary data to discover a new boson, called the Madala boson. Its discovery may help us explore more about what dark matter is and how it interacts with the universe.


Discovery of the Higgs boson in 2012 at the European Organization for Nuclear Research (CERN) has contributed heaps to our understanding of modern physics. But the Higgs boson only explains mass that we can see, touch and smell. Known matter only makes up 4% of the Universe’s mass and energy. Scientists predict the discovery of a new boson which interacts with dark matter, which makes up 27% of our universe.

Using the same data that led to Higgs’ discovery, the bright minds at the High Energy Physics Group (HEP) of the University of the Witwatersrand in Johannesburg have come up with the Madala hypothesis, which they believe will help them discover the new Madala boson.

The Madala boson team isn’t lacking in scientific minds, as they have around 35 students and researchers to brainstorm and help understand data from the experiments. They also have the support from Wits University, such as theorists Prof. Alan Cornell and Dr. Mukesh Kumar and Prof. Elias Sideras-Haddad’s assistance in detector instrumentation.

Image credit: Taylor L; McCauley T/CERN


Man’s understanding of physics keeps on evolving. Professor Bruce Mellado, team leader of the HEP group at Wits says we are now at a point similar to when Einstein formulated relativity and to when quantum mechanics came to light. We found classic physics lacking as it failed to make sense of plenty of phenomena. When the Higgs’ boson was discovered, the Standard Model of Physics was completed, but we have still only scratched the surface. Modern physics still can’t explain other phenomena including dark matter.

The discovery of the new Madala boson puts man in a good position to learn more about our universe. Perhaps there are even more particles to be discovered aside from this new boson. The future of modern physics has never been brighter.

Story Source: The above story is based on materials originally published on The original article was written by Michelle Lee. Image credit: Taylor L; McCauley T/CERN.
Note: Materials may be edited for content and length.